Overview of the Block 3 training course on "One Health, data and models for zoonotic disease management"

Introduction to modelling of diseases

Mudassar Chanda and Bethan V Purse

The **STUDY** of the **DISTRIBUTION** and **DETERMINANTS** of **HEALTH RELATED STATES** in specified **POPULATIONS**, and the application of this study to **CONTROL** of health problems

Host **Environment** (Species, age, sex, (weather, housing, breed, nutritional management, etc) status, physiological status etc)

Definition of infectious disease (Last, 1995)

"An illness due to a specific infectious agent or its toxic products that arises through transmission of that agent or its products from an infected person, animal, or reservoir to a suceptible host, either directly or indirectly through an intermediate plant or animal host, vector, or the inanimate environment"

Some key terms to describe the infectious disease at the population level

- **Epidemic:** The occurrence in a community or region of cases of an illness clearly in excess of normal expectancy
- Outbreak: An epidemic limited to localized increase in the incidence of a disease
- **Endemic**: The constant presence of a disease or infectious agent within a given geographic area or population group
- **Pandemic:** An epidemic occurring over a very wide area, crossing international boundaries and usually affecting a large number of people

Last, JM. A Dictionary of Epidemiology. 1995.

Types of Variables

Because different types of variables are analyzed differently

Qualitative/categorical data

- Descriptions
- Non-numeric information
- Examples: Illness (yes/no), sex, district

Quantitative data

- Measurements
- Numeric data
- Examples: Age, height, number of children

Summarizing data

Mean, median, mode, arithmetic mean, range

Measure of Central Location – single measure that represents an entire distribution

Mode – most common value

Median – central value

Mean – average value

Mean uses all data, so sensitive to outliers

Measures of Frequency

- Counts
- Ratios
- Proportions
- Rates- incidence, prevalence, attach rate, CFR,

Mortality rate and other rates

Why develop a model?

- To understand the transmission dynamics in a population
- To help interpret observed epidemiological trends in a population
- To identify key determinants of epidemics
- To guide the collection of data
- To forecast the future direction of an epidemic
- To evaluate the potential impact of an

intervention

Correlative models

Variable

Rainfall

Maximum temperature

Wet day frequency

Sea surface temperature

SST Anomaly

Rainfall at lag 2

Rainfall at lag 5

Maximum temperature at lag 5

SST at lag 15

SST Anomaly at lag 15 months

Co-efficient

-0.0010 (-0.0031, 0.0010)

-0.1292 (-0.2877, 0.0284)

0.0327 (-0.0244, 0.0897)

0.0936 (-0.4479, 0.6335)

0.1794 (-0.3404, 0.7001)

0.0025 (0.0008, 0.0041)

-0.0045 (-0.0071, -0.0019)

0.0121 (-0.0840, 0.1079)

-0.2820 (-0.7056, 0.1401)

0.4533 (0.0071, 0.8995)

Types of transmission models

- Deterministic/compartmental SIR model example Categorize individuals into broad subgroups or "compartments" Describe transitions between compartments by applying average transition rates Aim to describe what happens "on average" in a population Results imply epidemic will always take same course
- Probabilistic/stochastic (Monte Carlo, Markov Chain) – Incorporates role of chance and variation in parameters

models

Transmission models

Descriptive

studies

**periment

- cohort, crosssectional data
- Spatial modeling

• Species distribution models

 Basic reproduction number

Analytical studies

Block 3 training overview

17-01-2022	Day 1	18-01-2022	Day 2
Activity	Lead Trainer	Activity	Lead Trainer
Drop in: Installing			Dr
R and QGIS	Mudassar	Risk factor analysis	Jeromie/Mudassar
BREAK		BREAK	
Lecture: Basic		Hands on: Risk factor	Dr
epi models & GIS	Mudassar	analysis	Jeromie/Mudassar
Hands on: Basic			
epi models & GIS	Mudassar	Hands on: R as a GIS	Richard

19-01-2022	Day 3	20-01-2022	Day 4	21-01-2022	Day 5
Activity	Lead Trainer	Activity	Lead Trainer	Activity	Lead Trainer
BREAK		BREAK		BREAK	
Lecture: Spatial statistics	Pete	Lecture: Time series modelling	Pete/Richard	Mechanistic models for ZD	Ani Belsare
Lecture: Risk mapping for vectors & ZD	Beth	Hands on: time series modelling	Pete/Richard	Interactive Shiny A	Арр
Hands on: Spatial statistics	Pete				
		Hands on: Risk		Participat ory session: Lessons learned, next steps for training/n etwork,	D. d
Hands on: Risk mapping for vectors & ZD	Beth B	mapping for vectors & ZP ₃ training overview	Beth	additional Festus resources Mudas	·